Элементы теории функций и функциональный анализ
Укажите спектр линейного оператора А в евклидовом пространстве R2 A = :
{; 1}
{-6;-1}
{-1;-}
{1;6}
Если для двух норм и на конечномерном пространстве существуют такие и , что выполнимо двойное неравенство , то эти нормы называются _________ (какими?)
Скалярное произведение функций f(x) и g(x) в пространстве определяется по формуле: (f(x),g(x)) = f(x)×g(x)dx.Тогда скалярное произведение элементов sinх и cosx в пространстве равно ___________ (укажите ответ в виде десятичной дроби)
__________ ( какие?) две нормы в конечномерном пространстве эквивалентны (заполните пробел одним словом)
Интегральное уравнение Фредгольма x(t) - lK(t,s)x(s)ds = y(t) c параметром l решается методом последовательных приближений при < , где В = . Тогда интегральное уравнение Фредгольма x(t) - lcost×sins×x(s)ds = y(t) решается методом последовательных приближений при l, меньшем
Уравнение х(t) -cos(t+2s)x(s)ds = cos2t является интегральным уравнением Фредгольма _______ (какого?) рода (укажите порядок словом)
Скалярное произведение функций f(x) и g(x) в пространстве L2 [a,b] определяется по формуле: (f(x),g(x)) = f(x)×g(x)dx. Тогда скалярное произведение элементов 2х и в пространстве L2 [0,2] равно
4е4
4е2
е4 - 1
е2 - 1
Завершите определение: совокупность всех открытых подмножеств множества называется____________ ( чем?) на множестве
Норма интегрального оператора Фредгольма с квадратично интегрируемым ядром К(t,s) не превосходит числа В = . Тогда норма интегрального оператора Фредгольма с ядром К(t,s) = t3s4 в пространстве L2[0,1] B равна
Норма В интегрального оператора Фредгольма с ядром К(t,s) в пространстве L2[a,b] определяется по формуле В = . Тогда норма интегрального оператора Фредгольма с ядром К(t,s) = et+s в пространстве L2[0,ln2] равна _______ (укажите ответ в виде десятичной дроби)
Норма элемента f(x) в пространстве С [a,b] определяется по формуле: = . Тогда норма элемента sinx в пространстве С [-,] равна
Пусть - непрерывная на функция. Оператор отображает . Норма этого оператора равна
Известно, что расстояние от точки линейного нормированного пространства до гиперплоскости находится по формуле . Если и , то равно
sin1
1
В пространстве найдите решение интегрального уравнения , если , , , (укажите число)
Норма интегрального оператора Фредгольма с квадратично интегрируемым ядром К(t,s) не превосходит числа В = . Тогда норма интегрального оператора Фредгольма с ядром К(t,s) = sin(t)×cos(s) в пространстве L2[0,p] B равна
Пусть евклидово, или унитарное, пространство со скалярным произведением. Известно, что оператор самосопряженный. Укажите возможные виды матрицы этого оператора: матрица
эрмитова
симметрична
диагональна
треугольная
Уравнение x(t) - x(s)ds = et является интегральным уравнением Фредгольма _____ (какого?) рода (укажите порядок словом)
Норма интегрального оператора Фредгольма с квадратично интегрируемым ядром К(t,s) не превосходит числа В = . Тогда норма интегрального оператора Фредгольма с ядром К(t,s) = et+s в пространстве L2[0,ln2] B равна
1,5
1,9
0,5
2,5
Укажите соответствие между интегральным уравнением и его видом
х(t) -cos(t+2s)x(s)ds = cos2t
уравнение Фредгольма первого рода
ln(t2+ts+s2)x(s)ds = t + 3
уравнение Вольтерра первого рода
( t6+s6)x(s)ds = sint
уравнение Фредгольма второго рода
Если , то любое нормированное пространство _________ одновременно метрическим пространством (заполните пробел для верного утверждения)
Точка х Î А называется предельной для подмножества В Í А, если любая e-окрестность точки х содержит точку множества В, отличную от точки х. Тогда множеством предельных точек множества решений неравенства х2siny < 1 является множество решений
х2siny > 1
х2siny £ 1
х2siny ³ 1
х2siny = 1
Имеем линейное нормированное пространство и определенный на функционал является
ограниченным
непрерывным
линейным
вполне непрерывным
Какое условие на задано в определении сжатого отображения: сжатое отображение - отображение метрического пространства в себя, для которого существует , меньшее____________ (укажите ответ словом), такое, что для любых выполнено
Интегральное уравнение Фредгольма x(t) - lK(t,s)x(s)ds = y(t) c параметром l решается методом последовательных приближений при< , где В = . Тогда интегральное уравнение Фредгольма x(t) - l(ts)3 x(s) ds = y(t) решается методом последовательных приближений при l, меньшем
7
6
9
8
Косинус угла между элементами f(x) и g(x) в пространстве L2 [a,b] определяется по формуле: cos(f(x),g(x)) = ; (f(x),g(x)) = f(x)×g(x)dx ; = . Тогда косинус угла между элементами x2 и x3 в пространстве L2 [0,2] равен
Интегральное уравнение х(t) - ln(t2s - s3)x(s)ds = et является интегральным уравнением Вольтерра _____________ рода (ответ – словом)
Норма элемента f(x) в пространстве определяется по формуле: = . Тогда норма элемента в пространстве равна ___________ (укажите целое число)
Рассмотрим самосопряженный оператор в гильбертовом пространстве:для . Укажите варианты для области значений оператора:
всегда замкнута
может быть замкнутой
может быть незамкнутой
всегда открыта
Коэффициент ряда Фурье элемента f(x) = x по ортогональной системе 1, coskx, sinkx, k = 1,2,… пространства при sinx равен ___ (укажите целое число)
Рассматривается линейный самосопряженный вполне непрерывный оператор . Укажите верные утверждения:
если оператор A ненулевой , то он имеет по крайней мере одно отличное от нуля собственное значение
собственные векторы, отвечающие различным собственным значениям, ортогональны
собственное подпространство такого оператора конечномерно при
в пространстве существует единственный базис из собственных векторов
Норма элемента f(x) в пространстве L2 [a,b] определяется по формуле: = . Тогда норма элемента x4 в пространстве L2 [-1,1] равна
3
1
Укажите спектр линейного оператора А в евклидовом пространстве R2 A = :
{-0,5; }
{ ; 0,5}
{2;7}
{-7;-2}
Укажите, какие условия определяют линейность оператора : А) его область определения является подпространством в ; В) для любых ; С) для любых и любого числа ; D) для любых
одновременно A), B) и С)
все
только A) и D)
каждое из B),С) и D)
Пусть оператор линейный. Если он вполне непрерывный, то каждое комплексное число является для него либо _________, либо _________
собственным числом
регулярным числом
характеристическим числом
нормой
Неравенство превращается в неравенство треугольника при , равном __ (укажите целое число)
Найдите норму линейного ограниченного оператора , (укажите число)
Укажите верные утверждения. Если - сжатое отображение полного метрического пространства в себя и - коэффициент сжатия, то имеет
для любых
для любого последовательность сходится к
справедлива оценка
единственную неподвижную точку
Ортогональная система векторов называется полной, если ряд Фурье любого элемента сходится к в смысле
нормы
фундаментальной сходимости
условной сходимости
абсолютной сходимости
Норма оператора , действующего в , равна _______ (укажите число)
Пусть , . Задача о собственных значениях и собственных функциях данного оператора равносильна решению дифференциального уравнения . Установите соответствия между собственными значениями и собственными функциями
,
,
,
Имеем линейное нормированное пространство и определенный на функционал является
ограниченным
линейным
вполне непрерывным
непрерывным
Укажите регулярные числа оператора А в евклидовом пространстве R2 A = :
(-¥,-6) È (-6,-1) È (-1,+ ¥)
(-¥,1) È (1,6) È (6,+ ¥)
(-¥,-1) È (-1,-) È (-,+ ¥)
(-¥,) È (,1) È (1,+ ¥)
Многочлены Лежандра: Р0 = 1, Р1(х) = х, Р2 = (3х2 - 1). Разложение элемента f(x) = -6x2 +x -5 по многочленам Лежандра имеет вид:
f(x) = -7P0 + P1 - 4P2
f(x) = -6P0 + P1 - 5P2
f(x) = -5P0 + P1 - 6P2
f(x) = -6P0 + 2P1 - 5P2
Множество всех собственных векторов данного оператора, отвечающих данному собственному значению, являются линейным подпространством, называемым _________ (каким?) подпространством
Пусть и соответственно замкнутое и открытое множество топологического пространства . Тогда (укажите верные утверждения): A) замкнуто , B) открыто
только А)
только В)
оба верны
оба неверны
Коэффициент ряда Фурье элемента f(x) = x2 по ортогональной системе 1, coskx, sinkx, k = 1,2,… пространства L2[-p,p] при сosx равен
0
-5
-4
-2
Ортогональная система состоит из векторов
линейно-независимых
векторное произведение любых двух векторов равно нулю
скалярное произведение любых двух векторов равно нулю
имеющих равные модули
Коэффициент ряда Фурье элемента f(x) = x по ортогональной системе 1, coskx, sinkx, k = 1,2,… пространства при sin2x равен ____ (укажите целое число)
Если j(х) является отображением отрезка [a,b] в себя и имеет непрерывную производную j¢(х) на отрезке [a,b], то коэффициент сжатия оценивается по формуле q = êj¢(х) ê . Тогда отображение j(х) = cosx - 1 отрезка [-;] в себя является сжатым с коэффициентом сжатия
-
Укажите спектр линейного оператора А в евклидовом пространстве R2 A = :
{-; 0,1}
{-0,1; }
{-10;3}
{-3;10}