Аналитическая геометрия и линейная алгебра

Расширенная матрица image1107.gifсистемы уравнений имеет вид: image1111.gif, тогда система
имеет множество решений
несовместна
имеет единственное решение image1110.gif
имеет лишь тривиальное решение
Квадратичная форма image201.gifотрицательна определена при image202.gif
ни при каких image202.gif
image205.gif
image204.gif
image203.gif
Даны две системы векторов image229.gif. Базис в R3 образуют системы
никакая
image231.gif
image230.gif
обе
Собственные числа матрицы image058.gifравны
-1, 2
-1
1, 2
1
Данная поверхность image1353.gifявляется
круговым цилиндром
конусом
эллипсоидом
гиперболическим цилиндром
Даны два вектора image516.gifи image513.gif. Скалярный квадрат вектора image517.gifравен
4
40
0
6
Даны два вектора image521.gifи image522.gif. Вектор (image523.gif) длиннее вектора (image524.gif) в k раз, где k равно
5
3
2
1
Каноническая форма для image221.gifимеет вид
image222.gif
image224.gif
image223.gif
image177.gif
Координаты функции image255.gifпо базису image257.gifравны
(-1, 2)
(-2, 4)
(2, -1)
(4, -2)
Векторы image1253.gif, image1254.gif, image1255.gifобразуют базис в пространстве image1232.gif. Вектор image1256.gif. Его координаты в базисе image1257.gifравны
(3,-1,-1)
(1,2,3)
(1,0,1)
(1,1,3)
Даны векторы image510.gifи image503.gif. Скалярное произведение векторов (image504.gif), где image511.gif, равно
21
-20
20
-21
Если image369.gifи image370.gif- матрица линейного преобразования А, то координаты образа image366.gifравны
(-5, -11)
(1, 11)
(-5, 11)
(-5, 13)
На плоскости прямую, проходящую через точки М1(2, 0) и М2(0, -6), можно задать уравнением
х + у = 0
image037.gif
3(х -1) + 5(у + 2) = 0
у = 2х
Определитель Δ = image447.gifравен нулю при b, равном
b = - image449.gif
b = - image448.gif
b = image449.gif
b = 0
Проекция вектора image589.gifна ось OZ равна
-1
3
2
1
Уравнение прямой , проходящей через точку (-2, 4) с нормальным вектором image1324.gif(1,3) имеет вид
3(х+2)=у-4
image1325.gif
х+2+3(у-4)=0
image451.gif
Если image371.gifи image372.gif- матрица линейного преобразования А, то координаты образа image366.gifравны
(0, 5)
(6, 4)
(0, 6)
(2, 4)
Вектор image1356.gifявляется
направляющим вектором прямой image1357.gif
нормальным вектором плоскости 4(x - 1) + 5(y - 3) - 7(z - 2) = 0
направляющим вектором прямой image1358.gif
нормальным вектором плоскости x + 3y + 2 = 0
На плоскости прямая у = - 0,5х проходит через
начало координат
точку (2, -2)
точку (1, 0)
точку (0, -1)
Канонический вид имеет квадратичная форма
x2 + y2 + z2 + 3yz
4x2 - 5y2 + z2
x2 + y2 + z2 - 3yz
4x2 - 5y2 + z2 + 2xy - 2yz
Уравнение окружности image923.gifв полярной системе имеет вид
image925.gif
image924.gif
image868.gif
image922.gif
Координаты векторного произведения image599.gifвекторов image604.gifи image605.gifравны
image607.gif
image606.gif
image600.gif
image608.gif
Канонический вид имеет квадратичная форма
x2 - y2 - z2 - 2xz
2x2 + 5y2 + z2
3x2 - 2y2 + z2 + 2yz
x2 + y2 - z2 + 2xz +2yz
Алгебраическое дополнение элемента image968.gifматрицы image953.gifимеет вид
image971.gif
image969.gif
image972.gif
image970.gif
Определитель image1005.gifравен
12
0
3
-12
Уравнение линии image881.gifв декартовой системе имеет вид
х+у = а
х-у = а
х =а
у = а
Объем параллелепипеда, построенного на векторах image597.gif, image625.gifи image626.gif, равен
4 куб.ед.
0
1 куб.ед.
3 куб.ед.
На плоскости прямая х - у + 2 = 0 проходит через
точку (1, 1)
точку (0, 1)
начало координат
точку (-2, 0)
Присоединенная к матрице image947.gifматрица image933.gifравна
image948.gif
image951.gif
image949.gif
image950.gif
Из перечисленных прямых 1) у = 4х+1; 2) у = 2х-3; 3) у = - image680.gif+4; 4) у= -4х-5 перпендикулярными являются
2 и 3
3 и 4
1 и 2
1 и 4
Даны два вектора image534.gifи image535.gif. Острый угол image533.gifмежду этими векторами равен
90°
30°
60°
45°
Уравнения асимптот гиперболы image742.gifимеют вид
у = image744.gif
у = image745.gif
у = image743.gif
у =image746.gif
Произведение двух комплексно сопряженных чисел image1269.gif, где image1272.gif, равно
image1269.gif= 2
image1269.gif= 1 - 2i
image1269.gif= 0
image1269.gif= 1 - i
Для матриц image1170.gifи image1171.gifматрица image1175.gifравна
image1169.gif
image1176.gif
image1174.gif
image1177.gif
Координаты вершин эллипса image811.gifравны
image814.gif
image812.gif
image813.gif
image815.gif
Система уравнений с матрицей image1143.gifи вектором правых частей image1144.gifимеет вид
image1147.gif
image1148.gif
image1145.gif
image1146.gif
Среди формул для вычисления длины вектора image565.gif: 1) image566.gif; 2) image567.gif; 3) image568.gif; 4) image569.gifверными являются
2, 3, 4
1, 3
2, 3
1, 2, 4
Координаты функции image255.gifпо базису image256.gifравны
(-1, 2)
(4, -2)
(-2, 4)
(2, -1)
Частное image1273.gif, где image1274.gif, image1275.gif, равно
image1279.gif
image1276.gif
image1278.gif
image1277.gif
В пространстве Oxyz уравнение F(x, y, z) = 0 является уравнением данной поверхности, если
координаты (x, y, z) любой точки этой поверхности удовлетворяют этому уравнению
x2 + y2 + z2 ¹ 0
координаты любой точки (x, y, z) этой поверхности данному уравнению не удовлетворяют
координаты (x, y, z) каждой точки этой поверхности удовлетворяют этому уравнению, а координаты любой точки, не лежащей на поверхности, этому уравнению не удовлетворяют
Квадратичная форма image207.gifположительно определена при image202.gif
image206.gif
image209.gif
ни при каких image202.gif
image208.gif
Острый угол между прямыми 2х+у = 0 и у = 3х-4 равен
image688.gif
image690.gif
image691.gif
image585.gif
Координаты многочлена image245.gifпо стандартному базису image242.gifравны
(-3, 1, 4)
(1, 2, 1)
(1, 4, 1)
(4, -3, 1)
Прямая 3х-3у+5 = 0 образует с положительным направлением оси ОХ угол, равный
image584.gif
0
image552.gif
image586.gif
Векторы image1258.gif, image1254.gif, image1255.gifобразуют базис в пространстве image1223.gif. Вектор image1259.gif. Его координаты в стандартном базисе image1260.gif, где image1261.gif, равны
(2, 1, 1)
(2, 2, 2)
(2, 1, -1)
(2, 3, 2)
Заданы декартовы и полярные координаты точек А (2, 2), В (-2, 0), С (0, 2) и М (2, image552.gif), N(2, image584.gif), К (2, image887.gif). Из перечисленных точек совпадают следующие:
В и К; С и М
А и N; В и К
А и К
С и К; В и М
Уравнение параболы с фокусом F(3, 0) и директрисой х+3 = 0 имеет вид
image798.gif
image800.gif
image799.gif
image801.gif
Определитель image1006.gifравен
-2
2
0
4
Данная поверхность image1355.gifявляется
гиперболическим цилиндром
эллипсоидом
конусом
круговым цилиндром
Линейчатой поверхностью является
эллиптический параболоид
двухполостный гиперболоид
гиперболический параболоид
эллипсоид вращения